🎮 Tentukan Himpunan Penyelesaian Dari Persamaan Trigonometri
Untuk 0° ≤ x ≤ 360° tentukan himpunan penyelesaian dari sin x = 1 / 2. Pembahasan Dari: sin x = 1 / 2. Untuk harga awal, sudut yang nilai sin nya 1 / 2 adalah 30°. Sehingga sin x = 1 / 2 sin x = sin 30° Dengan pola rumus yang pertama di atas: (i) x = 30 + k ⋅ 360 k = 0 → x = 30 + 0 = 30 ° k = 1 → x = 30 + 360 = 390 ° (ii) x
Tentukan himpunan penyelesaian dari persamaan trigonometri berikut: $\sin 3x=0$ untuk $0^\circ < x < 360^\circ$. $2\cos (2x-60^\circ )-\sqrt{3}=0$ untuk $0\le x\le 2\pi$.
Salah satu pembahasan pada materi trigonometri adalah menyelesaikan persamaan trigonometri. Biasanya, soal yang diberikan pada persamaan trigonometri adalah untuk menentukan himpunan penyelesaian yang terdiri atas sudut-sudut yang memenuhi persamaan trigonometri.
Himpunan penyelesaian dari persamaan trigonometri merupakan himpunan semua nilai-nilai variabel yang memenuhi persamaan tersebut. Dalam hal ini, variabel yang umum digunakan adalah sudut. Cara Menyelesaikan Persamaan Trigonometri Untuk menyelesaikan persamaan trigonometri, terdapat beberapa langkah yang dapat kita ikuti.
Persamaan trigonometri dapat memuat jumlah atau selisih dari sin atau cos. Untuk penyelesaiannya dapat diubah menjadi bentuk persamaan yang memuat perkalian sinus atau kosinus. Begitu juga jika dihadapkan dengan kasus sebaliknya.
Himpunan penyelesaian dari persamaan trigonometri terdiri atas sudut-sudut yang memenuhi persamaan trigonometri tersebut. Anda mungkin masih ingat bahwa bentuk grafik fungsi trigonometri adalah bersifat periodik, yakni bentuknya berulang sama pada rentang tertentu.
Contoh Soal. Tentukan akar-akar dari persamaan trigonometri berikut kemudian tuliskan himpunan penyelesaiannya. sin 𝑥 = sin 70°, 0° ≤ 𝑥 ≤ 360°. Jawab: sin 𝑥 = sin 70°, 0° ≤ 𝑥 ≤ 360° 𝑥1. = 70° 𝑥2 = (180 − 70)°. = 110°. Jadi himpunan penyelesaiannya adalah {70°, 110°} cos 𝑥 = cos 60°, 0° ≤ 𝑥 ≤ 360°.
Berikut penyelesaian persamaan trigonometrinya : ♣ Persamaan Sinus : sinf(x) = sinθ memiliki penyelesaian : f(x) = θ + k. 2π dan f(x) = (180 ∘ − θ) + k. 2π. ♣ Persamaan Cosinus : cosf(x) = cosθ memiliki penyelesaian : f(x) = θ + k. 2π dan f(x) = − θ + k. 2π. ♣ Persamaan Tan : tanf(x) = tanθ memiliki penyelesaian :
Carilah himpunan penyelesaian dari persamaan √ ucos +sin −√ t= r dalam interval ° ≤ ≤° . Tanpa menggunakan kalkulator, coba carilah solusi penyelesaian untuk persamaan di atas. Gunakan menu table (w9) pada kalkulator untuk membantu menemukan penyelesaian dari persamaan trigonometri
Penyelesaian persamaan trigonometri dapat dilakukan dengan 2 cara, yaitu cara geometri dan cara aljabar. Cara geometri yang dimaksud di sini adalah dengan menggambar grafik bila persamaan tersebut dinyatakan dalam bentuk fungsi. Hanya saja, menggambar fungsi trigonometri tidak semudah menggambar fungsi polinomial.
Persamaan trigonometri sederhana terdiri dari persamaan untuk sinus, cosinus, dan tangen. Pembahasan materi persamaan trigonometri sederhana dibatasi pada penyelesaian yang berada pada rentang 0 o sampai dengan 360 o atau 0 sampai dengan 2π. Rumus untuk menyelesaikan persamaan trigonometri sederhana seperti berikut: Tentukan penyelesaian
Rumus untuk menyelesaikan persamaan trigonometri sebagai berikut: 1. Sinus Jika dengan p dan a dalah konstanta, maka Dalam bentuk derajat: Sebagai contoh: Maka: Menentukan himpunan penyelesaian umumnya yaitu: k = 0 = 60 atau = 0 k = 1 = 180 atau = 120 k = 2 = 300 atau = 240 k = 3 = 360 Jadi, himpunan penyelesaian umumnya adalah:
B6L0ny.
tentukan himpunan penyelesaian dari persamaan trigonometri